Proving the Trigonometric Identity: SinA/(1-cosA) - (1-cosA)/SinA 2cosecA
In trigonometry, proving identities is a fundamental task that helps establish relationships between trigonometric functions. One such identity is:
[frac{sin A}{1-cos A} - frac{1-cos A}{sin A} 2csc A]
Step-by-Step Proof
To prove the given identity, we will start from the left-hand side (LHS) and simplify it to match the right-hand side (RHS).
Step 1: Combine the fractions
The LHS can be combined into a single fraction:
[frac{sin A}{1 - cos A} - frac{1 - cos A}{sin A} frac{sin^2 A - (1 - cos A)^2}{(1 - cos A)sin A}]
Step 2: Expand the numerator
Let's expand the numerator:
[sin^2 A - (1 - cos A)^2 sin^2 A - (1 - 2cos A cos^2 A) sin^2 A - 1 2cos A - cos^2 A]
Using the Pythagorean identity [sin^2 A cos^2 A 1]:
[sin^2 A cos^2 A 1 Rightarrow sin^2 A - 1 2cos A - cos^2 A 2cos A]
Therefore, the numerator simplifies to:
[2cos A]
Step 3: Substitute back into the fraction
Substituting this back into the fraction:
[frac{2cos A}{(1 - cos A)sin A}]
Step 4: Simplify the expression
We can simplify this by canceling [1 - cos A] (assuming [1 - cos A eq 0]):
[frac{2cos A}{(1 - cos A)sin A} frac{2}{sin A} 2csc A]
Step 5: Rewrite using cosecant
Since [csc A frac{1}{sin A}], the expression can be rewritten as:
[2csc A]
Conclusion
Therefore, we have shown that:
[frac{sin A}{1 - cos A} - frac{1 - cos A}{sin A} 2csc A]
Thus, the identity is proven.
Alternative Solution
Another way to prove the same identity is as follows:
[frac{sin A}{1 - cos A} - frac{1 - cos A}{sin A} frac{sin^2 A - (1 - cos A)^2}{(1 - cos A)sin A} frac{sin^2 A - 1 2cos A - cos^2 A}{(1 - cos A)sin A}]
This simplifies to:
[frac{1 - (1 - 1 2cos A - cos^2 A)}{(1 - cos A)sin A} frac{1 - 1 2cos A}{(1 - cos A)sin A} frac{2cos A}{(1 - cos A)sin A}]
Cancelling out the common terms, we get:
[frac{2cos A}{(1 - cos A)sin A} frac{2}{sin A} 2csc A]
Hence, the identity is shown to be true.
For further exploration, you can also consider:
[text{LHS} frac{sin A}{1 - cos A} - frac{1 - cos A}{sin A}]
After simplifying, it can be shown to equal:
[2csc A text{RHS}]
Therefore, the identity is proved.
See more on trigonometric identities and proof techniques.